4 заметки с тегом

AFF

NetApp AFF A320

Мне нравится подход, который NetApp стал использовать при выпуске новых моделей СХД. Нет помпезного обновления всей линейки оборудования раз в несколько лет. Зато есть постоянное поступательное движение вперед. Обновились начальные системы FAS и AFF (год назад), в то же время выпустили полностью новую систему с поддержкой end-to-end NVMe — A800. А сейчас выходит новая система AFF уровня midrange. В какой-то момент систему хотели назвать A400, но вышла она под названием A320. Я понимаю сомнения по поводу названия, с одной стороны это end-to-end NVMe массив, но с другой стороны отличий от А300 не так много. Обо всём по порядку…
Итак, новая midrange система — AFF A320. Как лёгко догадаться по названию модели, массив находится в иерархии AFF-систем между A300 и A700.

Пара контроллеров A320 расположена в одном шасси и занимает 2U. Дисков внутри нет, они находятся в новой полке NS224, которая поддерживает только NVMe SSD и для подключения к контроллерам использует протокол NVMe over RoCEv2 поверх 100GbE.

Контроллеры

Внутри HA-пары:

  • Два 20-ядерных процессора Intel Skylake
  • 512 GB DDR4-2666 RAM
  • 32 GB NVDIMM
  • 12 x 100GbE RoCE QSFP28 портов для подключения полок и хостов
  • 4 x 100GbE iWARP QSFP28 порта для кластерного- и HA-интерконекта
  • 4 x PCIe-слота расширения

Будут доступны следующие карты расширения:

  • 4-port 32Gb FC SFP+ optical
  • 2-port 100GbE RoCEv2 QSFP28 optical
  • 2-port 25GbE RoCEv2 SPF28 optical
  • 4-port 10GbE SFP+ Cu and optical

Все 100GbE-порты поддерживают работу на скорости 40GbE. Но RoCE пока поддерживается только для подключения полок, поддержка для хостов появится позже.

Что ещё не поддерживается:

  • Нет поддержки SAS-полок и не будет,
  • Нет поддержки UTA2 портов, FCoE и не будет,
  • MCC IP, но поддержка появится позже.

Само собой, A320 можно использовать в одном кластере с ранее вышедшими контроллерами. И раз мы заговорили про интерконект, то давайте обратим внимание на один нюанс. HA-интерконект и кластер-интреконект теперь работают через одни и те же порты. Напомню, что HA-интерконект используется между двумя контроллерами в HA-паре для репликации логов в NVRAM (NVDIMM в случае с A320), то есть репликации кэша. А кластерный интерконект используется для объединения двух и более контроллеров в единый кластер, по нему происходит репликация конфигурации кластера, передаются данные при переносе томов (vol move) с одного контроллера на другой, передается клиентский трафик (если обращение с хоста пришло на порт ноды, которая не владеет томом с данными). И теперь получается, что в случае switched-кластера, HA-интерконект будет осуществляться через коммутаторы.

А теперь немного пофантазируем — из чего состоит HA-пара? Это два контроллера и дисковые полки, подключенные к каждому из этих контроллеров. Если же появляются коммутаторы для HA и через эти же коммутаторы у нас могут подключаться полки (RoCE), то получается, что пропадает жёсткая привязка контроллеров друг к другу и к дисковым полкам. HA-пары можно формировать между любыми контроллерами в кластере, каждый контроллер может получить доступ к любой полке и диску в кластере. Но это лишь фантазии, никаких официальных подтверждений нет :)

Дисковая полка NS224

NS224 занимает высоту 2U и содержит 24 шт. NVMe SSD. Два модуля NSM — это то, что в SAS полках называется IOM. По два 100GbE-порта находятся в каждом модуле NSM. Полка может выдать 400Gb/sec пропускной способности. Для сравнения, полка DS224C с 8 портами SAS-3 теоретически может выдать 384Gb/sec.
Поддерживаются диски емкостью 1,9, 3,8 и 7,6TB, а чуть позже будут доступны диски емкостью 15TB. Диски в A800 и NS224 отличаются и на момент анонса полка NS224 не поддерживает подключение к A800. К A320 можно подключить две полки, а в дальнейшем, вероятно, максимальное количество полок может увеличится за счёт использования коммутаторов, но это неточно.

Полки можно будет заказать с 12, 18 и 24 дисками.

Вот так выглядит подключение двух полок к A320:

Производительность

Пока нет официальной информации по производительности в IOPS и GB/sec.

Но в погоне за IOPS часто стали забывать про задержки. С широким распространением систем all-flash задержки меньше 1 мс стали неким стандартом. Довольно долго многих не интересовало, насколько меньшее время, чем 1 мс может выдать СХД. Ведь 1 мс — это уже в 10-20 раз лучше, чем мы получали на СХД с использованием HDD. Сейчас же начинается новый этап, задержки начали мерить сотнями микросекунд, а в некоторых случаях и десятками микросекунд.

Известно что задержки будут в районе 100 мкс, что ниже в 5-10 раз, чем у A300! Задержки заметно снижаются даже без использования NVMe over FC.

Новый кластерный коммутатор BES-53248

На замену коммутатору CN1610 пришёл BES-53248, и его также выпускает Broadcom.

В коммутаторе есть следующие порты:

  • 48 x SFP28 ports (10/25GbE)
  • 8 x QSFP28 ports (10/40 or 25/50/100GbE)

Поддерживается использование этого коммутатора и для MCC IP. Конфигурация скоростей портов будет отличаться в зависимости от того применяется он в MCC IP или в обычном switched-кластере.

Порты доступные в базовой поставке:

  • 16 x 10GbE SFP+ ports
  • 2 x 40GbE QSFP ports
  • 2 x 100GbE QSFP28 ports for ISL

Остальные конфигурации требуют покупки лицензий.
Блоки питания дублированные.

На этом с железом всё. А так как прошло полгода с выхода ONTAP 9.5, значит настало время ONTAP 9.6.

2019   AFA   AFF   AFF A320   NVMeF

AFF A800 — первый end-to-end NVMe all flash массив на рынке

Небольшая вводная часть, в которой даже присутствует подобие аналитики рынка

8 мая NetApp выпустил очередную версию ONTAP и представил несколько новых систем хранения, в том числе первую доступную на рынке end-to-end NVMe-oF all-flash СХД AFF A800.
Я решил разделить информацию об ONTAP и новым железе на два поста. Сейчас поговорим про новое железо. И тут у нас не только A800. Про ONTAP 9.4 в этом посте.

NetApp AFF A800 — первый доступный на рынке enterprise end-to-end NVMe all flash массив. Сильное заявление, проверять я его конечно не буду.

Да, я знаю про Dell EMC PowerMax, который был анонсирован буквально неделю назад. Но вот какая незадача — NVMe на фронтенде, то есть NVMe-oF, в нём еще нет. А появится поддержка NVMe-oF в PowerMax только в начале 2019 года.

Давайте сразу поговорим про других производителей enterprise СХД на рынке. Тут не будет речи о стартапах, потому что у них довольно серьезное отставание по функциональности в сравнении с устоявшимися на рынке игроками.

IBM. Добавили поддержку NVMeF over InfiniBand для FlashSystem 900. Внутри flash-модули, если я не ошибаюсь, подключаются по PCIe. Но мы помним, что NVMe — это не только PCIe, но и новый протокол, который полностью заменяет SCSI.
Анонсировали поддержку NVMe-oF для IBM FlashSystem 900/A9000/A9000R, IBM FlashSystem V9000, IBM Storwize V7000, IBM SAN Volume Controller (SVC). End-to-end NVMe массива доступного на рынке нет.

Pure Storage имеют //X70 c NVMe модулями. У них были показательные тесты NVMe-oF с Cisco, использовали RoCEv2 40GbE. Когда будет доступно простым смертным неизвестно. End-to-end NVMe массива доступного на рынке нет.

У Huawei уже давно доступна на рынке система OceanStor Dorado5000 V3, но пока никаких вестей про NVMe-oF. End-to-end NVMe массива доступного на рынке нет.

HPE буквально вчера анонсировали обновление для линейки Nimble. Говорят, что они готовы к NVMe и SCM (Storage Class Memory), но всё будет происходить в три этапа.

  • NVMe и SCM как кэш на чтение
  • NVMe SSD
  • NVMe-oF

В каком порядке неизвестно, а в новых системах пока стоят SATA SSD. End-to-end NVMe массива доступного на рынке нет.

Если я где-то ошибся и о чём-то не упомянул, то буду рад любым комментарием.

А что же NetApp? А NetApp за прошедшие месяцы успел отгрузить более 20ПБ NVMe SSD. Как так? В каждой системе FAS последнего поколения есть Flash Cache на базе NVMe. Кроме того уже более 8 месяцев доступна система EF570 с поддержкой NVMe-oF по InfiniBand.

8 месяцев назад NetApp уже рассказывал про планы на NVMe и SCM. Была демонстрация работы NVMe-oF на A300 и AFF 8020. А SCM в первую очередь планируется использовать как кэш на чтение в all-flash массивах. Кроме этого есть планы по использованию server-side Software-Defined Memory решения компании Plexistor, которую NetApp не так давно приобрёл, совместно с СХД. То есть мы видим последовательную и планомерную работу по внедрению новых технологий хранения с сохранением совместимости с существующими решениями.

А после небольшого вступления мы опять возвращаемся к NetApp AFF A800 — первому доступному на рынке enterprise end-to-end NVMe all flash массиву.

AFF A800

  • HA-пара выдаёт 1.3 млн IOPS случайного чтения c задержкой 500µs
  • Минимальная задержка в 200µs
  • 34ГБ/сек чтения на пару контроллеров с NVMe-oF
  • 25ГБ/сек чтения на пару контроллеров по NFS
  • 11.4 млн IOPS случайного чтения в 24-узловом кластере при использовании NAS
  • Более 300ГБ/сек чтения в 24-узловом кластере при использовании NAS

И если вы побежали сравнивать заявленную маркетинговую производительность с Dell EMC PowerMax, то подождите. В ближайшее время обещают опубликовать результат тестирования A800 в SPC-1. Я думаю такой радости от Dell EMC мы не дождёмся. И имейте в виду, что заявленные Dell EMC 10 млн IOPS для PowerMax указаны для профиля 8K RRH, что означает random read hit 8K блоком — случайное чтение со 100% попаданием в кэш.

Ну а теперь подробнее. A800 работает на ONTAP 9.4. Значит доступна вся богатая функциональность ONTAP, а также работа в кластере с существующими системами.
Так A800 выглядит спереди без крышки. NVMe SSD синенькие.

А так сзади:

Тут без сюрпризов в дизайне корпуса контроллеров. Видно, что за основу взяли конструкцию контроллеров A700s. Но теперь в корпусе 4U имеем 48 дисков. На старте продаж доступны диски ёмкостью 1.9, 3.8 и 7.6ТБ. Позже будут и 15.3ТБ SSD, что даёт более 2.5ПБ+ эффективной ёмкости всего в 4U.

Сетевые интерфейсы

Из ethernet-интерфейсов доступны 100GbE, 25GbE и 10GbE. Это будут отдельные сетевые карты. Сетевая карта на 100GbE поддерживает и 40GbE. Пока эти интерфейсы только для файловых протоколов и iSCSI. FCoE и NVMe-oF на них не поддерживается.

NVMe-oF работает по Fibre Channel. Для NVMe-oF поддерживаются скорости 32/16Gb, для обычного FC — 32/16/8Gb.

Кластерный и HA-интерконнект по отдельным 100GbE портам. Для кластерного интерконнекта можно использовать и 40GbE. А в случае апгрейдов текущих кластеров можно использовать и 10GbE. И да, повторюсь, А800 можно использовать в существующих кластерах с уже существующими не NVMe системами.

Для 100GbE кластерных сетей доступен новый для NetApp коммутатор Cisco Nexus 3232C.

Надеюсь, что в будущем появится поддержка NVMe-oF по RoCE. 100GbE и 25GbE порты есть, осталось реализовать это в ПО.

Storage

48 внутренних NVMe SSD. Они теперь голубенькие, чтобы не перепутать с обычными SSD. Вставить их в SAS полки не получится. Новые системы продаются на выбор с 24, 36 или 48 дисками. Внешних NVMe полок нет. Думаю, что это временно. Если купить систему с неполным набором дисков, то новые диски можно докупать паками по 6 штук. Кстати, хорошая аналогия с пивом, которое тоже часто продаётся six-pack’ами. А NetApp любит пиво.

Но к A800 можно подключать SAS полки. В первую очередь это сделано для апгрейдов старых AFF систем. Поддерживаются DS224C и DS2246 с IOM12. Можно подключить до 8 полок.

Для подключения внутренних дисков используется 4 PCIe Gen3 коммутатора, от каждого идёт по 24 полосы к 12 NVMe SSD. Поэтому изменился принцип заполнения шасси дисками. Шасси разделено на 4 квадранта. Вот как будет выглядеть шасси с 24 дисками, в которое добавили еще 6 дисков.

Прочие приятные мелочи

A800 поддерживает ADP. И поддерживает MetroCluster IP. А MetroCluster IP теперь работает с ADP. Правда это только для AFF систем. (Исправлено. До этого было написано, что для всех систем с поддержкой MCC IP).

Для high-end систем требуется иметь достаточно объёмные root агрегаты. Они должны быть не меньше объема оперативной памяти контроллеров, так как в случае паники контроллера в root агрегат сохраняется core dump, который техподдержка используется для выяснения причин паники. Объем оперативной памяти A800 — 1280ГБ. Но минимальный размер root агрегата всего 187ГБ. Core dump теперь сохраняется на флешке, с которой грузится контроллер.

Для NVlog’а теперь используются NVDIMM, а не NVRAM. Это позволяет еще больше сократить задержки на запись, так как шина памяти “отзывчивее”, чем PCIe.

С выходом ONTAP 9.4 NVMe-oF доступен A700/A700s/A300. На 60% выше производительность и на 50% ниже задержки.

Новые модели начального уровня

На смену FAS2600/A200 приходят FAS2700/A220.
То же самое шасси, но более мощный процессор, в два раз больше ядер. Прирост производительности на 20-30%.

В FAS2700 чуть больше изменений. Теперь там NVMe Flash Cache на джва ТБ. Есть два набора портов — 8xUTA2 или 8x10GbE BASE-T. UTA2 порты теперь поддерживают iSCSI Data Center Bridging (DCB). BASE-T порты не поддерживают FCoE. Только iSCSI, NFS, SMB.

На этом всё про A800. Готов ответить на вопросы в комментариях или в нашем уютном телеграм-чате — https://t.me/storagediscussions
А для получения оперативных новостей про NetApp и просто интересные ссылки подписывайтесь на канал https://t.me/storagetalks

2018   AFF   AFF A220   AFF A800   NVMe   NVMeF

Новые системы NetApp под управлением ONTAP 9.1

Во время ежегодной конференции для партнёров и заказчиков NetApp Insight было объявлено о выходе новых систем хранения данных, работающих под управлением операционной системы ONTAP. Обновились системы FAS и AFF.

Вместе с выходом нового оборудования будет доступна новая версия ONTAP — 9.1.
Для начала разберёмся, что же нового в железе.

FAS. Всем FlashCache. Первые СХД с 40GbE и 32Gb FC.

Начнём с обновления гибридных массивов FAS. Выходит 4 новые модели: FAS2620, FAS2650 — системы начального уровня, FAS8200 — система среднего уровня для корпоративных заказчиков и FAS9000 — high-end система с абсолютно новым (для NetApp) подходом в построении шасси.

Новые системы стали существенно производительнее:

  • Используются новые процессоры Intel на архитектуре Broadwell
  • Доступно больше кэша и NVRAM
  • NVMe FlashCache
  • В старших контроллерах доступны интерфейсы 40GbE и 32Gb FC
  • Для подключения дисков используется SAS-3 12Gb

Как видно, моделей стало меньше, что вполне логично при возможности горизонтального масштабирования. Клиенты, которым будет не хватать FAS8200, а FAS9000 покажется слишком производительной, могут брать 4-контроллерные кластеры из FAS8200.

FAS2600

Теперь в младшей линейке две модели. FAS2620 заменяет FAS2554, а FAS2650 — FAS2552. Модели аналогичной урезанной в функциональности FAS2520 теперь нет. И это вполне логично, в моей практике эти модели продавались очень редко.

FAS2620 и FAS2650, как и прошлое поколение, используют одинаковые контроллеры. Отличаются только шасси. В первом случае это шасси на 24 SAS или SSD дисков. А FAS2620 имеет шасси на 12 дисков SATA или SSD.

Обе эти системы конвертируются в дисковые полки для подключения к новым контроллерам в случае апгрейда на старшие модели. Только полки теперь DS224C и DS212C. Это полки с 12Gb SAS интерфейсом. Принцип наименования остался прежний — Disk Shelf, количество юнитов, количество дисков и скорость интерфейса. C — 12 в hex. При желании новые полки можно подключить к текущим контроллерам FAS8000. Надо всего лишь приобрести соответствующий SAS HBA. В новых полках ACP не требует отдельных портов и работает внутри SAS.

Новые системы обещают быть в 3 раза быстрее поколения FAS2500:

  • 2 шестиядерных процессора на основе микроархитектуры Intel Broadwell
  • 64GB DDR4 памяти
  • 8GB NVRAM
  • 1TB NVMe M.2 FlashCache

Да-да-да! FlashCache на младших моделях, еще и NVMe, и в базовой конфигурации.
Увеличились максимальные лимиты на общее количество кэша на контроллерах на основе FlashPool и FlashCache до 24TiB.

Вот как выглядят технические характеристики новых контроллеров в сравнении с текущим поколением:

Вид контроллеров сзади:

Какие порты для чего используются:

Наконец-то, есть выделенные 10GbE порты для кластерного интерконекта. И нет необходимости чем-то жертвовать для получения конфигурации iSCSI/NFS/CIFS/FCoE + FC.

Теперь содержимое NMRAM в случае потери питания шифруется и записывается на загрузочную флешку.

Из нюансов: FAS2620 не будет доступна в конфигурации all-SSD. Необходимо иметь минимум 8 SATA дисков. FAS2650 таких ограничений не имеет.

FAS8200

FAS8200 пришла на замену сразу двум моделям текущего поколения — FAS8020 и FAS8040. Пара контроллеров FAS8200 находится в одном корпусе и занимает всего 3U. Дисков в этом шасси нет.
Обещают прирост производительности по сравнению в FAS8040 около 50%:

  • В 2 раза больше ядер
  • В 4 раза больше памяти
  • 2 TiB NVMe FlashCache в базе с возможностью расширения до 4TiB
    Характеристики FAS8200 в сравнении с FAS8040:

Так контроллеры выглядят сзади:

Подробнее про порты:

И что же мы имеем? Контроллеры мощнее и занимают меньше места. В контроллерах меньше слотов расширения и они поддерживают меньше дисков. Но всё не так плохо.

Разберёмся сначала с дисками.
По статистике более 80% продаж FAS8040 идут с менее чем 150 дисками, то есть реальной необходимости в поддержке 720 дисков у целевой аудитории FAS8200 нет. Если лимит в 480 дисков кого-то беспкоит, то всегда можно добавить в кластер еще пару контроллеров и максимальное количество дисков увеличится до 960.

Что же делать с меньшим количеством слотов расширения? Слоты расширения в 8040 часто используются под FlashCache, который в FAS8200 теперь на материнской плате и слоты под него не нужны. Дополнительные слоты нужны при построении MetroCluster для плат FC-VI, через которые происходит зеркалирование NVRAM на удалённую площадку. Теперь для этих целей можно использовать уже имеющиеся на контроллере порты UTA2. Дисков поддерживается 480, так что нет необходимости занимать слоты SAS HBA картами.

Получается слоты нужны только для портов Ethernet или FC, если базовых портов на контроллере не хватает. И тут мы вспоминаем, что теперь в ONTAP 9.1 NetApp поддерживает использование портов 40GbE и 32Gb FC. Порты 40GbE могут использоваться в качестве 4 по 10GbE.

40GbE порты поддерживаются только в новых контроллерах, а карты 32Gb FC будут доступны и для текущего поколения FAS/AFF.

FAS9000

Ну а теперь поговорим про монстра, который пришёл на замену FAS8060 и FAS8080 EX.

В текущем поколении вся линейка FAS80x0 делит одну архитектуру шасси. В FAS9000 применили новый подход, который упрощает обслуживание и расширение.

Но начнём с технических характеристик и сравнения с FAS8080 EX.
Прирост производительности по сравнению с FAS8080 EX 50% за счёт:

  • 72 ядер — 4 процессора по 18 ядер
  • 1024GB DDR4 памяти — в 4 раза больше
  • В два раза больше NVRAM
  • 2TiB NVMe FlashCache, расширение до 16TiB
  • Зеркалирование NVRAM с пропускной способностью в 80Gb/sec

Таблица сравнения с FAS8080 EX:

Ну а теперь самое интересное — вид сзади:

Новый модульный дизайн. Контроллеры не имеют клиентских портов. Контроллеры и модули расширения поддерживают горячую замену. Благодаря тому, что модули расширения теперь “живут” отдельно от контроллера, при их замене нет необходимости производить failover и нет сложностей с кабелями из других модулей. И самое интересное, что это шасси позволяет в будущем заменить контроллеры FAS9000 на новые.

Несмотря на меньшее количество слотов и отсутствие портов на самих контроллерах, масштабируемость по подключению клиентов не страдает. FlashCache использует отдельные слоты. Поддерживаются порты 40GbE и 32Gb FC. Кстати, для кластерного интерконекта теперь используются 40GbE порты.

AFF A300 и  AFF A700

Разобрались с FAS, переходим к all-flash системам.

All-flash моделей теперь две и они немного поменяли способ именования.

Самые догадливые конечно поняли, что для AFF систем используется та же самая железная платформа, что и для FAS8200 и FAS9000. Поэтому подробно расписывать технические характеристики я не буду, остановлюсь только на некоторых из них.

  • A300 даёт на 50% больше производительности при задержках 1мс, чем AFF8040
  • Поддерживает до 384 SSD
  • Доступны SSD 15.3TB, 3.8TB и 960GB
AFF A300 AFF A300
  • A700 выдаёт в два раза больше производительности, при задержках в два раза ниже, чем AFF8080
  • Поддерживает до 480 SSD
  • Доступны SSD 15.3TB, 3.8TB и 960GB
AFF A700 AFF A700

Ну и конечно обе модели поддерживают интерфейсы 40GbE, 32Gb FC.

А теперь поговорим немного про производительность.

Такого прогресса не достичь простым обновлением железной платформы. С выходом ONTAP 9.1 NetApp первым начал начал поддерживать технологию Multi-Stream Write для SSD. Изначально эту технологию разработали в Sаmsung. В конце 2015 эта технология стала частью стандарта T10 SCSI. Она также будет в стандарте NVMe.

Multi-stream write (MSW) SSD

Что это за технология?
Для начала немного общеизвестной информации.
Всем известно, что запись на SSD сильно отличается от записи на HDD. SSD по сути не имеет такой операции как перезапись. При изменение каких-то данных необходимо стереть старые данные и заново записать измененные данные. Проблема в том, что чтение и запись в пустое место происходит с гранулярностью страницы, а вот при удалении необходимо стирать блок, который состоит из нескольких страниц. Это всем известные P/E циклы (Program/Erase). Всё это ведёт к уменьшению срока службы SSD и снижению производительности при заполнении диска.

Срок службы снижается, так как NAND-ячейки рассчитаны на определенное количество P/E циклов. Что касается производительности, контроллер SSD старается писать изменении данных в пустые страницы. Периодически для очистки блоков с устаревшими данными запускается Garbage Collector, который освобождает блоки. Пока есть свободные страницы для записи новых и измененных данных, GC работает в фоне и особо не влияет на производительность. Но при достижении определенной степени наполненности диска, GC начинает работать более активно, и производительность SSD на запись существенно снижается. SSD приходится производить больше операций, чем на него приходит со стороны хоста. Это называется write amplification. На графике производительности SSD виден типичный write cliff.

В Samsung решили классифицировать данные, которые идут со стороны хоста. Данные ассоциируются с определенным потоком. В один поток попадают данные, которые с высокой вероятностью будут одновременно изменяться или удаляться. Данные из разных потоков пишутся в разные блоки на SSD.

Такой подход позволяет увеличить долговечность SSD, повышает производительность и обеспечивает стабильные задержки.
По внутренним тестам Samsung технология multi-stream write вполовину снижает write amplification, endurance вырастает до 3 раз, задержки в большинстве случаев снижаются на 50%.

Всё это теперь доступно в AFF системах NetApp с ONTAP 9.1.

Подробнее о Multi-stream SSD:
Презентация “The Multi-streamed Solid State Drive” — Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho

Доклад USENIX “The Multi-streamed Solid-State Drive” — Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho

Презентация “Multi-Stream Write SSD Increasing SSD Performance and Lifetime with Multi-Stream Write Technology” — Changho Choi, PhD

ONTAP 9.1

Что еще нового в следующей версии ONTAP?
Поддержка FlexGroups. Это масштабируемые файловые контейнеры, которые могут хранить до 20PB и 400 млрд файлов. Одна FlexGroup может располагаться на нескольких контроллерах в кластере, при этом при записи файлов кластер автоматически балансирует нагрузку. Подробнее про FlexGroups.

Поддержка шифрования данных без специальных self-encrypting дисков и внешних менеджеров ключей. NetApp Volume Encryption (NVE). Шифрование происходит на уровне тома. То есть можно выбирать какие тома шифровать, а какие нет. Для каждого тома используется отдельный ключ шифрования. Шифрование происходить в программном модуле встроенном в ONTAP, используются hardware acceleration на уровне процессоров Intel. При этом сохраняется польза от всех технологий эффективности NetApp. WAFL отрабатывает до того как данные будут зашифрованы.

Поддерживается работа в MetroCluster. Есть возможность реплицировать данные из незашифрованных томов на другую систему в шифрованные тома. Поддерживается ONTAP Select. А параноики могут использовать два способа шифрования: NVE и шифрование на уровне NSE дисков.
К сожалению, это всё будет недоступно в России. Будет использоваться два разных образа ONTAP — с поддержкой NVE и без.

ONTAP Select теперь поддерживает конфигурации all-flash.

А ONTAP Cloud официально заработал в MS Azure.

Ну и самое главное для кластеров с использованием SAN-протоколов увеличен лимит по количеству контроллеров в кластере. Теперь такие кластеры могут состоять из 12 нод или 6 пар контроллеров. Так что все технические характеристики и лимиты контроллеров, про которые я написал, можно умножать на 6 или на 12, если будут использоваться только файловые протоколы.




2016   9   9.0   9.1   AFF   AFF A300   AFF A700   Azure   encryption   FAS   FAS2600   FAS8200   FAS9000   flash   FlexGroups   ONTAP 9   ONTAP Cloud   ONTAP Select

Что такое inline data compaction?

Сегодня у нас перевод статьи из рассылки Tech ONTAP про новую функцию для повышения эффективности хранения, которая появилась в NetApp ONTAP 9 — inline data compaction.
...

В NetApp ONTAP 9 мы добавили новую функцию для увеличения эффективности хранения, которая называется inline data compaction (уплотнение данных на лету). Так как эта концепция нова для большинства, я решил потратить немного времени на объяснение в этой статье как работает уплотнение и как эта технология взаимодействует с другими технологиями повышения эффективности хранения.

Данные уплотняются последовательно в том же порядке, что они и попадают на контроллер. Пока данные в памяти контроллера, мы берём “куски” данных, каждый из которых в обычной ситуации занял бы целый 4KB блок (если кто забыл ONTAP оперирует данными с гранулярностью в 4KB — прим. переводчика), и уплотняем их. Благодаря уплотнению больше одного “куска” данных помещаются в 4KB физический блок. Это можно сравнить с упаковкой чемодана или рюкзака. Мы можем взять блоки, часть которых содержит нули или пустое пространство, избавиться от пустого пространства и тем самым уплотнить их.

Операция уплотнения происходит в процессе создания consistency point (CP). Это часть сборки “тетриса”: у меня есть несколько маленьких “кусков” данных. Могу ли я быстро их совместить так, чтобы они уместились в один физический блок до того как я запишу его на носитель? Пока мы разрабатывали технологию уплотнения, мы подали на регистрацию немало патентов. Наш метод инновационный. Уплотнение работает по-умолчанию в системах All-flash FAS. И его опционально можно включить на обычных FAS системах, как на HDD агрегатах, так и на Flash Pool агрегатах. В любой случае, вы ничего не платите за эту функцию, она находится в ядре ONTAP, как дедупликация и компрессия.

Уплотнение это механизм дополняющий существующие технологии. Оно ортогонально дедупликации, но очень хорошо работает совместно с адаптивной компрессией (алгоритм, который используется в AFF и использует 8KB группы — прим. переводчика). При использовании адаптивной компрессии на лету, мы создаём группы компрессии, когда данные можно сжать на 50 и более процентов. После сжатия данных мы смотрим можно ли совместить в одном физическом 4KB блоке несколько мелких “кусков”, которые получились после сжатия. Так как это всё происходит в процессе CP, то операция уплотнения требует очень мало ресурсов, максимум 1% или 2% CPU. У вас никогда не должно быть ситуации, когда дополнительные 1%-2% нагрузки на CPU, критически меняют ситуацию с загрузкой. В такой ситуации ваша система уже перегружена.

Хотя компрессия и уплотнение отлично работают вместе, использовать их совместно необязательно. Например, том с большим количеством мелких файлов может быть хороший целью для уплотнения, но при этом не будет никакой выгоды от использования компрессии.

Вот как хронологически работают технологии эффективности на контроллере, при условии, что все они активны:

  1. В первую очередь мы детектируем любые блоки, состоящие целиком из нулей. Такие блоки мы вообще не записываем, мы лишь обновляем метаданные. По существу эти блоки лишь увеличивают счётчик ссылок.
  2. После мы применяем адаптивную компрессию. Этот процесс очень эффективен с точки зрения производительности. Мы определяем можно ли сжать блок на 50% и более. Мы не тратим циклы CPU, пытаясь сжать данные на 49% (это не даст никакой выгоды).
  3. Дальше работает инлайн дедупликация. Эта функция появилась в ONTAP 8.3.2. В данном алгоритме сравниваются и дедуплицируются только блоки, которые находятся в памяти. В ONTAP 9.0 расширили размер хранилища хэшей отпечатков и туда теперь включаются блоки, которые были недавно записаны. Если вы хотите увеличить выигрыш от дедупликации, то мы советуем в дополнение использовать фоновую дедупликацию по расписанию.
  4. И наконец, срабатывает уплотнение. Любые данные, которые уже были сжаты, или наоборот не рассматривались, в качестве кандидатов на сжатие, подходят для уплотнения. Это могу быть, например, маленькие несжатые файлы или данные сжатые на 75% и более. Процесс уплотнения собирает физический 4KB блок из двух или более таких “кусков”. Чем выше степень сжатия или чем меньше файлы, тем выше выгода от уплотнения. То есть мы можем получить множественный эффект, совмещая малые блоки, сжатие и уплотнение. Вы скорее всего не узнаете какой эффект от уплотнения вы можете получить, пока не начнёте использовать эту технологию. При уплотнении используется эвристический анализ во время CP. Алгоритм динамически меняет количество ресурсов, которые затрачиваются на уплотнение. Цель — найти оптимальное соотношение затраченных ресурсов на полученную степень уплотнения.

Вы можете использовать уплотнение данных без компрессии и дедупликации. Допустим у вас среда, в которой хранятся только очень маленькие файлы, 2KB и меньше. Эти файлы не сжимаются и скорее всего от дедупликации будет мало толку. Зато при использовании уплотнения вы получите выигрыш всякий раз, когда два или более файла будут сохраняться в одном 4KB физическом блоке.

Порядок применение технологий повышения эффективности хранения данных

В случае с репликацией, если источник и получатель использует одни и те же политики эффективности, то выгода от технологий эффективности будет сохранятся. Нет никакой необходимости заново прогонять данные через все алгоритмы на получателе. К примеру, вы используете систему AFF, на которой все процессы эффективности включены по-умолчанию, и реплицируете данные с неё на обычный FAS с помощью SnapVault. Если вы хотите сохранить выгоду от дедупликации, компрессии и уплотнения в процессе передачи данных, то вам необходимо, чтобы соответсвующие поликти были включены на FAS системе.

Суммируя, уплотнение данных на лету никак не изменяет сами данные. Мы просто пытаемся более эффективно упаковать данные. Если у вас не хранится множество мелких файлов, то проще всего думать об уплотнении, как о технологии, которая повышает эффективность работы адаптивной компрессии. Уплотнение поможет вам, если у вас есть операции меньше 4KB. Учитывая то, что уплотнение почти не тратит ресурсы CPU, при этом даёт дополнительное полезное пространство, его однозначно стоит использовать с All-flash FAS.

...

На самом деле примерно оценить эффективность работы уплотнения, как и компрессии с дедупликацией можно с помощью утилиты SSET (Space Savings Estimation Tool). Она доступна для партнёров и клиентов NetApp на support-сайте.

2016   9   9.0   AFF   compaction   compression   deduplication   ONTAP   ONTAP 9   WAFL